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Abstract. In this paper, we propose a variant of the Pollard rho method.
We use an iterating function whose image size is much smaller than its do-
main and hence reaches a collision faster than the original iterating func-
tion. We also explicitly show how this general method can be applied to
multiplicative subgroups of finite fields with large extension degree.

The construction for finite fields uses a distinctive feature of the nor-
mal basis representation, namely, that the p-th power of an element is
just the cyclic shift of its normal basis representation, when the un-
derlying field is of characteristic p. This makes our method appropriate
for hardware implementations. On multiplicative subgroups of Fpm , our
method shows time complexity advantage over the original Pollard rho
method by a factor of approximately 3p−3

4p−3

√
m.

Through the MOV reduction, our method can be applied to pairing-
based cryptosystems over binary or ternary fields. Hence our algorithm
suggests that the order of subgroups, on which the pairing-based cryp-
tosystems rely, needs to be increased by a factor of approximately m.

Keywords: discrete logarithm problem, pairing, Pollard rho method,
normal basis.

1 Introduction

Let G be a finite cyclic group of order q generated by g. Given h ∈ G, the discrete
logarithm problem (DLP) over G is to find the smallest non-negative integer
x satisfying gx = h. The integer x, denoted by logg h, is called the discrete
logarithm of h to the base g. Given g and x, exponentiation gx(= h) can be
efficiently computed through the Square-and-Multiply method, but recovering
x from h = gx is considered to be difficult in many cases. Many cryptographic
algorithms have been proposed under the assumption that the DLP is hard to
solve under a specific presentation of the cyclic group.

The cyclic groups most widely used with cryptosystems are the multiplicative
subgroups of finite fields and the subgroups of elliptic curves defined over finite
fields. In practical use of finite fields, prime fields have drawn more attention,
than other fields, because prime fields are easier to implement on general purpose
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hardware and since the index calculus attack [2] is faster on binary fields than on
prime fields [6]. In contrast, with pairing-based cryptography, binary and ternary
fields are widely used as the base field over which Tate or Weil pairings are
defined, due to the size of their embedding degrees [3,4,11]. Note that the base
problems on which pairing-based cryptosystems are built can be transformed
into the DLP on binary or ternary fields through the MOV reduction [13,10].
This increases the significance of the study of DLP on extension fields.

In this paper, we propose an algorithm to solve the DLP in large order exten-
sion fields. The normal basis representation is used, and this makes our algorithm
suitable in hardware implementations. Our algorithm exploits the distinctive
feature of the normal basis representation, namely, that the p-th power of an
element is just the cyclic shift of its normal basis representation, where p is the
characteristic of the underlying field. This feature was used in [8,12,27] to speed
up the Pollard rho method on elliptic or hyperelliptic curves with efficient au-
tomorphisms. Our main contribution is in giving a precise complexity analysis
for the case when such feature is used to solve the DLP over finite fields of large
extension degree.

The Pollard rho method on a cyclic group G traces a random walk over G
by iteratively applying a function to G. The discrete logarithm of the target
can be computed when a collision is reached in the random walk. When the
iterating function is assumed to be random, a collision is expected to occur after
about

√|G| applications of the iterating function, due to the birthday paradox.
Thus the complexity of Pollard rho method is determined by the size of the
base group G on which random walk is performed and the running time of the
iterating function. Reducing either one of these two factors will result in speedup
of the Pollard rho method.

The recent work [7] proposes an improvement of the Pollard rho method on
prime fields by reducing the average time taken for computing each application
of the iteration function. In contrast, our method restricts the random walk to
a subset S of G so that a collision occurs after about

√|S| applications of the
iterating function, which is smaller than

√|G|. The main difficulty in doing this
was finding a fast iterating function with an image set S that was much smaller
than G. We make an explicit construction for subgroups of F×

pm , with the small
prime and large extension degree case as our main target. Our construction yields
speedup over the normal Pollard rho by a factor of 3p−3

4p−3

√
m.

We also show how our method can be applied to a pairing-based cryptosystem,
in which a bilinear map e : G1 ×G2 → GT is used. When a Tate or Weil pairing
is in use, G1 is a subgroup of points on an elliptic curve E(Fp�) and GT is a
cyclic subgroup of F×

pk� , where k is the embedding degree. The MOV attack [13]
transforms the DLP on G1 or G2 into a DLP on GT . When our algorithm is
applied to GT , which is a subgroup of F×

pk� , the complexity of the DLP on GT is

reduced by a factor of 3p−3
4p−3

√
k�. There are many cryptosystems [4,11] that sug-

gest the use of bilinear maps over binary or ternary fields, for computational and
communication efficiency reasons. To be more explicit, k� is set to 1132 and 726
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in the binary and ternary curves suggested in [4,11]. On these parameters, our
method would give Pollard rho speedup by factors of 20.2 or 18.0, respectively.

We remark that, while we have achieved complexity lower than the straight-
forward application of Pollard rho, this does not conflict with the complexity
lower bound known [18] for generic algorithms solving DLPs, as our method
utilizes the encoding information for the group. When our construction is force-
fully placed within the generic algorithm framework, the gain we achieve can be
explained from the fact that some group operations are much easier than others,
which is a property that is ignored in the generic algorithm framework. In fact,
the result on generic algorithm complexity implies that, to achieve results better
than normal Pollard rho, we should either exploit the group encoding or invent
a method that mostly uses the fastest of the group operations.

Organization. In Section 2, we introduce the Pollard rho method and its vari-
ants. In Section 3, we present a variant of Pollard rho, called the random walk
restriction. In Section 4 and 5, we apply this method to finite fields of large ex-
tension degree and pairing-friendly elliptic curves over binary or ternary fields,
respectively. Section 6 concludes this paper.

2 Pollard rho Algorithm

Throughout this paper G = 〈g〉 will be a finite cyclic group of prime order q,
and h = gx will be the target we wish to find the discrete logarithm of. In this
section, we briefly review some variants of the Pollard rho method.

Let us start by explaining the parts that are common to all the variants.
Suppose we know (a, b), (c, d) ∈ Zq ×Zq, such that gahb = gchd and b �= d. Such
a pair implies the linear equation a + b · x ≡ c + d · x (mod q) and we can easily
solve for x from this equation. All variants of the Pollard rho method suggest
how to efficiently obtain such a double expression for a single element of G. The
general strategy for obtaining the double expression is explained next.

We say that a function f : G → G is exponent traceable, or allows exponent
tracing, with respect to g and h, if it is possible to express the function in the
form

f(gahb) = gfg(a,b)hfh(a,b),

for some easily computable functions fg, fh : Zq × Zq → Zq. Let us fix an
exponent traceable function f and take a random (a0, b0) ∈ Zq×Zq. We generate
a sequence (gi)i≥0 through iterative applications of f , i.e., we set

g0 = ga0hb0 and gi+1 = f(gi) for i ≥ 0.

Since G is finite, there must be integers μ ≥ 0 and λ > 0 satisfying gλ+μ =
gλ. The smallest of such integers are called the pre-period and period of the
sequence (gi)i≥0, respectively. The exponent traceable property of f implies
that we have access to the exponents (ai, bi) for each gi = gaihbi . Thus, an
appropriate collision of the generated sequence, i.e., the event of gi = gj with
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bi �= bj , allows us to compute the discrete logarithm of h, through the method
described previously.

Below, we shall describe two exponent traceable iterating functions and some
methods for detecting collisions. Any combination of the two components will
produce a version of the Pollard rho algorithm.

2.1 Iterating Functions

Because the value λ + μ, called rho length, is expected to be
√

πq/2 when the
function f is chosen uniformly at random from the set of all functions on G,
an iterating function is considered to be of good design if its rho length is close
to

√
πq/2.

There are two main types of iterating functions. One is the original Pollard’s
iterating function and the other is called r-adding walks. They are defined as
follows. Let G = T0 ∪ T1 ∪ T2 be a partition of G consisting of roughly equal
sized subsets. The Pollard’s iterating function fP [15] is

fP (y) =

⎧
⎪⎨

⎪⎩

gy, if y ∈ T1,
y2, if y ∈ T2,
hy, if y ∈ T3.

Let r be a small positive integer and let T0∪· · ·∪Tr−1 be a partition of G into
roughly the same sized subsets. For each s = 0, . . . , r−1, set the multipliers Ms =
gmshns with randomly selected integers ms, ns. With the indexing function s :
G → {0, 1, ..., r− 1}, that specifies to which Ts(y) a given element y ∈ G belongs
to, the r-adding walk fT is defined to be

fT (y) = y · Ms(y).

The work [17] shows that the expected rho length for random walk sequences
generated by an r-adding walk using any r ≥ 8 is roughly of the order O(

√
q)

on any cyclic group. Number of tests [25] over elliptic curves have shown that
the rho length of Pollard’s original iterating function is larger than

√
πq/2, but

that of 20-adding walks is very close to
√

πq/2.

2.2 Collision Detection

The most naive approach to finding collisions is to store all generated points
gi until a collision occurs. The main issues with collision detection is to do
this with minimal number of iterating function applications after the actual
collision and with a small amount of memory. Recall that μ and λ denote the
pre-period and period, respectively. Among the many collision detection methods
proposed [9,5,16,23,14], we briefly explain those suggested by Floyd, Brent, and
Quisquater-Delescaille.

Floyd. The central idea is to wait for a collision of type gi = g2i to happen. Three
applications of the iterating function are needed at each iteration to update the
two current states gi and g2i to gi+1 and g2(i+1), respectively. This will reach a col-
lision within λ+μ iterations, or equivalently, 3(λ+μ) applications of the iterating
function. So, with a good iterating function, 3

√
πq/2 applications are expected.
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Brent. We explain a method by Teske [24], which is an optimized version of
the works [19,5]. Eight most recent gk, for which the index k are powers of 3,
are kept in storage. After each application of the iterating function, the current
gi is compared with the eight stored entries, and gi replaces the oldest of the
eight entries if a new power of 3 has been reached. This will terminate with a
collision between current gi and some gk from storage in {1.25 · max(λ/2, μ) +
λ} iterations. When the iterating function is random, this is expected to be
1.229

√
πq/2 iterating function applications.

Distinguished points. [16] This was originally an idea for use with time-
memory tradeoff techniques. Distinguished points are those elements of G that
satisfy a certain condition, which is easy to check. For example, with a fixed
encoding for G, we may set them to be those elements with a certain number of
starting bits equal to zero.

After each application of the iterating function, the current gi is added to a
table, if and only if it is a distinguished point. The algorithm terminates when a
collision is found among the stored distinguished points. The distinguished point
should be defined so that this table is of manageable size.

Let θ be the fraction of elements in G which satisfy the distinguishing prop-
erty. The algorithm is expected to terminate with a collision after

√
πq/2 + 1/θ

applications of the iterating function. This method has the advantage that it
can lead to n-times speedup with n-processor parallelization [26].

3 Random Walk Restriction

In this section, we describe a general approach, previously applied to subgroups
of elliptic curves [8,12,27], that results in faster DLP solving than straightforward
applications of the Pollard rho variants. Recall that the complexity of Pollard rho
variants is

√
π|G|/2 evaluations of iterating function when the cost of collision

detection is ignored. This shows that two factors influence the complexity of
Pollard rho variants. One is the complexity of iterating function evaluation and
the other is the size of space on which the random walk is traversed. There are
corresponding two approaches to the speedup of Pollard rho. One is the reduction
of complexity for the evaluation of the iterating function and the other is the
restriction of the random walks to a subset of G. The former was studied in [7]
and the latter is the approach taken by this paper. After explaining the general
method, which we shall call random walk restriction, its application to more
concrete settings shall be explored in the next section.

3.1 Solving DLP with an Iterating Function of Small Image Size

Fix any function ϕ : G → G which allows exponent tracing, but which may not be
useful for solving DLP, i.e., the collisions generated are of the form gahb = gchd

with b = d. Let f : G → G be any exponent traceable iterating function suitable
for solving DLP on G and consider the function fϕ := ϕ ◦ f . It is clear that
fϕ maps Ḡ to Ḡ, where Ḡ = Im(ϕ) is a notation we shall use throughout this
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section. Since f is always chosen to be exponent traceable, fϕ also satisfies
the same condition. Notice that during the random walking of the Pollard rho
method variants, we do not need G to be closed under the group operation.
Thus, we will have no problem using fϕ as an iterating function on Ḡ, which is
a smaller set and which should bring earlier collision.

It remains to see if fϕ will show properties close to a random function. We
have the following proposition to support this when ϕ is uniform in its number
of pre-images.

Proposition 1. Let ϕ : G → G be a function such that |ϕ−1(y)| = |G|/|Ḡ| for
all y ∈ Ḡ = Im(ϕ). If f is selected uniformly at random from GG, the set of all
functions on G, then fϕ = ϕ ◦ f is a random function on Ḡ.

Proof. Consider the function ϕ̃ : GG → ḠḠ mapping f �→ (fϕ = ϕ◦f). It suffices
to show that ϕ̃ is uniform in its number of pre-images, so that each function on
Ḡ is equally likely to be chosen, when each function f on G is equally likely to
be chosen.

Let y = (yj)j∈Ḡ ∈ ḠḠ be any function on Ḡ. We are viewing y as the function
on Ḡ sending j �→ yj . Suppose that x = (xi)i∈G ∈ GG satisfies ϕ̃(x) = y. Then
we must have ϕ(xj) = yj for each j ∈ Ḡ ⊂ G, but the equation ϕ̃(x) = y places
no restriction on xi for i ∈ G \ Ḡ. In fact, we have ϕ̃(x) = y if and only if
ϕ(xj) = yj for each j ∈ Ḡ. Since for each j ∈ Ḡ, xj may be any one of the
|G|/|Ḡ|-many elements of G, we have

|ϕ̃−1(y)| =
( |G|
|Ḡ|

)|Ḡ|
· |G||G\Ḡ|,

which is evidently uniform over all y ∈ ḠḠ. ��
Even though this proposition allows us to intuitively believe that fϕ on Ḡ is as
good a random function on Ḡ as f is on G, as soon as we fix an iterating function
f , the induced function fϕ on Ḡ is an explicit function, so the above proposition
is no logical guarantee that fϕ will provide a good random walk. But this was
the situation with the original f to begin with.

For a function f , let us denote its expected time for evaluation by |f |. The
discussion so far allows us to state the main result of this section.

Theorem 1. Let ϕ : G → G be an exponent traceable function. Then, given
an exponent traceable iterating function f suitable for solving DLP on G and
a collision detection method, by working with fϕ = ϕ ◦ f over Ḡ = Im(ϕ), the
expected time to solve the discrete logarithm problem over G can be reduced by a

factor of
√

|Ḡ|
|G| · |fϕ|

|f | , compared to that of the original method over G.

Notice that our result is mostly independent of which variant of Pollard rho
algorithm we use. Use of the distinguished point method for collision detection
is an exception, if one is to be very exact, but even this case can be dealt with
by appropriately increasing its probability of appearance. As the expected rho
length has decreased, this should not cause trouble with distinguished point
storage requirements.
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Remark 1. What can we expect of the random walk provided by fϕ, when ϕ is
not uniform in its number of pre-images? This situation implies that during the
walk provided by fϕ, some elements of Ḡ are more likely to occur than others. So
we should arrive at a collision even earlier than expected of a random function.
Such unevenness works to the DLP solver’s advantage.

Example 1. Let ω ∈ Zq be of order t. Suppose ϕ is defined in such a way that it
satisfies

ϕ(y) = ϕ(yωi

), i = 0, 1, . . . , t − 1,

in addition to being exponent traceable. Then the image of such a ϕ would be
at most 1

t -th of the total space. One possible candidate for such a function is
to define ϕ(y) as the minimum of y, . . . , yωt−1

under an appropriate ordering.
In general, such a ϕ would have high evaluation complexity, i.e., t exponenti-
ations and comparisons, but in a field of prime characteristic, ϕ can have low
complexity. In Section 4, we follow this lines of reasoning.

It should be clear by now that we do not have to define fϕ as a composition
of two functions. The essential idea is to design an iterating function, i.e., an
exponent traceable function on G, with an image space that is much smaller
than expected of random functions. In practice, it would be harder to design
such a mapping directly than by composition.

4 Application to Finite Extension Fields

In this section, we explain how the general theory is applied to a concrete case by
suggesting an image-restricting function on large extension fields of small finite
fields.

Let p be a prime and consider Fpm , the finite field of pm elements. In this
section, we apply results of the previous section to cyclic subgroups of F×

pm . We
fix a normal basis {α, αp, . . . , αpm−1} for Fpm and write elements of Fpm using
the coordinates in the normal basis, i.e., write β = b0α + · · · + bm−1α

pm−1
as

β = (b0, ..., bm−1). As before, our objective is to solve for logg h in a cyclic group
G = 〈g〉 ⊂ F×

pm of prime order q.
There is a natural way to give Fp an ordering, and once a basis for Fpm is fixed,

we can give Fpm the dictionary order using the ordering on Fp. In particular,
we have given an ordering to elements of G ⊂ F×

pm . We next define the map
ϕ : G → G by

ϕ(y) = min{ ypi | i = 0, . . . , m − 1}. (1)

When Fpm is encoded using the normal basis, the function ϕ outputs the smallest
of all cyclic shifts of its input. Notice that in any realization of ϕ that uses the
normal basis, the number i producing the minimum will be known, in which case
ϕ is naturally exponent traceable. The exponent are simply multiplied by pi.

To see the effects of the method given in Section 3.1, we need to compare the
image size |Ḡ| with |G|. In the process we shall see that ϕ is almost uniform in
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its number of pre-images, but this information is not absolutely necessary for
our purpose.

Proposition 2. Let t be the smallest positive integer such that q|pt − 1. Then
|ϕ−1(y)| = t for every y ∈ Im(ϕ) \ {id}.

Proof. Let y ∈ G\{id}. It suffices to show that the number of distinct cyclic shifts
of y is t. Suppose ypj

= ypi

for some 0 ≤ j < i < m. Writing this as ypi−pj

= 1
and recalling |〈y〉| = q, we know q|pj(pi−j − 1). But, as gcd(q, pj) = 1, we must
have q|pi−j − 1. Thus, the choice of t implies that h, hp, · · · , hpt−1

are all the
distinct elements of G, and that this sequence is repeated for further powers. ��

The proof of the above proposition has also shown that t is a divisor of m. If t
is a proper divisor of m, then we are looking at the situation G ⊂ Fpt ⊂ Fpm .
So, in any cryptographic application of G ⊂ F×

pm , we would have t = m, for,
if otherwise, we would just be wasting resources. We state implications of this
thought as a remark.

Remark 2. In any cryptographic application of G ⊂ F×
pm , the function ϕ of

equation (1) is almost pre-image uniform in that the number of pre-images is
|ϕ−1(y)| = m for every y ∈ Im(ϕ) \ {id}. Hence the size |Im(ϕ)| is very close to
|G|/m.

So far, from discussions of Section 3.1, we know that, by working with fϕ over
Ḡ, the DLP over G can be solved with

√
1/m factor reduction in the number

of iterating function applications. To see how this translates into real advantage
over the original direct approach on G, it remains to compare the speed of f to
that of fϕ.

To evaluate the function ϕ given by (1), we need to find the smallest among
m integers given as elements of (Fp)m = Fp × · · · × Fp. This can be done with
m− 1 comparisons in (Fp)m. To compare |ϕ| with |f |, we want to count this in
terms of operations in Fp.

Lemma 1. The number of operations in Fp required to compare two integers in
(Fp)m is expected to be p

p−1 (1 − 1
pm ).

Proof. Let x = (x1, . . . , xm) and y = (y1, . . . , ym) be two integers from (Fp)m.
If we had x1 = y1, x2 = y2, . . . , xi−1 = yi−1, but xi �= yi, then i comparisons in
Fp would be required to find the smaller of x and y. Thus our expected number
of comparisons is

m−1∑

i=1

i ·
(1

p

)i−1(
1 − 1

p

)
+ m ·

(1
p

)m−1

,

where the last term is written separately because it looks slightly different. Eval-
uation of the sum results in our claim. ��



62 M. Kim, J.H. Cheon, and J. Hong

This lemma shows that if p is large, the first comparison is likely to show us
which of the two is smaller, and for even p = 2, two comparisons in F2 are
enough. Thus we have the following lemma concerning the speed of ϕ.

Lemma 2. On the cyclic group G ⊂ F×
pm , we can expect to evaluate the function

ϕ given by equation (1) using (m − 1) p
p−1 (1 − 1

pm ) operations in Fp.

In general, evaluation of f is equal to one group operation in G. To compare
|ϕ| and |f |, we need to know the complexity of multiplication in Fpm in normal
basis representation.

To multiply two elements from a finite field under normal basis, classically,
the matrix T = (ti,j), defined by

αpi · αpj

=
∑

0≤k<m

ti−k,k−jα
pk

is considered. For x = (x0, ..., xm−1), y = (y0, ..., ym−1) ∈ Fpm , product xy is
computed as

z = xy = (z0, ..., zm−1), zi = (xi, ..., xi−1) T (yi, ..., yi−1)t,

where indexes are computed modulo m. Let d be the number of non-zero entries
in T . Then multiplication in Fpm can be done with at most 2md operations in
Fp using T . Furthermore, we always have d ≥ 2m−1 and better ways are known.

Let us say that a multiplication of two polynomials in Fp[x] of degree less
than m can be done with at most M(m) operations in Fp. Classical polynomial
multiplication yields M(m) ≤ 2m2, but it is known [21,22] that we may take
M(m) ∈ O(m log m log log m).

At the moment, the fastest method for a multiplication under normal basis
is one using Gauss periods [20]. The method for multiplication in Fpm requires
M(km)+ (2k + 1)m− 2 operations in Fp, for a positive number k corresponding
to the type of Gauss period used. Thus, even if we disregard the more expensive
M(km) ∈ O(km log(km) log log(km)) part, whose multiplicative constant we are
unaware of, we see that multiplication in Fpm requires at least 3m operations
in Fp.

Putting together Lemma 2 and the above information, we can say that the
time taken for ϕ evaluation is expected to be less than roughly p

3(p−1) multipli-
cations in Fpm . Since a usual iterating function involves one multiplication in
Fpm , recalling fϕ = ϕ◦f , we can state that |fϕ| < 4p−3

3p−3 |f |. The following is now
a corollary to Theorem 1.

Theorem 2. For a cyclic subgroup G of F×
pm , by using ϕ as given by equa-

tion (1) and by working with fϕ over Im(ϕ) ⊂ G, we can speed up variants of
the Pollard’s rho algorithm by a factor greater than 3p−3

4p−3

√
m.

For example, on the cyclic subgroups of F×
21024 , assuming that the normal Pollard

rho is faster than the index calculus method, we have m = 1024 and obtain
complexity reduction of the DLP by a factor of at least 24.26.
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We end the explanation of our algorithm with a word of caution. When dealing
with characteristic p fields, since ϕ(h) = ϕ(hp), any iterating function which
utilizes p-th power cannot be used. In particular, with cyclic subgroups of the
binary field, the original iterating function fP , as suggested by the Pollard,
cannot be used. This shows that one should pay attention to any glitches that
could occur from interaction between ϕ and the iterating function.

Comparison with tag tracing. The recent work [7] suggests an improvement
of the r-adding walk called the tag tracing method for prime fields. It is also
possible to apply the idea of [7] to finite extension fields in the normal basis
representation, and we have explained this in the appendix.

Let us compare our random walk restriction and the tag tracing method on
Fpm . With random walk restriction, the expected rho length is reduced by a√

m-factor from that of the original r-adding walks while each step takes a little
bit more time, i.e., |f |+ |ϕ|, which is less than 4p−3

3p−3 |f |. On the other hand, in the
tag tracing method, the rho length is preserved, but each step is replaced by a tag
tracing step consisting of a tag computation, a table lookup, and an occasional
computation of f . That is, random walk restriction reduces the number of steps
taken by Pollard rho, while tag tracing decreases the effort taken by each step.

For the explicit example F21024 , our random walk restriction achieves time
reduction by a factor of 4p−3

3p−3
1√
m

= 5
96 . Hence unless tag computation and table

lookup combined requires less than 5
96 |f | time, random walk restriction will be

advantageous over tag tracing. On hardware implementations, where finite field
multiplication can be relatively fast, table lookups may become the bottleneck
and the goal of 5

96 |f | per iteration will be hard to achieve with tag tracing. In
addition, tag tracing requires a large storage space, which is not needed with
random walk restrictions.

5 Application to Pairing Based Cryptosystem

The security of pairing based cryptosystem using a bilinear map e : G1×G2 → GT

depends on the DLP on G1. For Weil or Tate pairings, G1 is the order q subgroup
of points in an elliptic curve E(Fp�) and GT is a cyclic subgroup of F×

pk� . The
positive integer k, called the embedding degree of G1, is usually chosen so that it
is difficult to solve DLP over F×

pk� through the index calculus method. Since the
MOV attack [13] reduces the DLP on G1 to the DLP on a subgroup of GT , it is
anticipated that the best way to solve the DLP over G1 is to use the Pollard rho
method on G1 or on the corresponding order q subgroup of GT . We shall discuss
the effect of our approach when it is applied to the subgroup of GT .

Let us look at a specific example. The short signature scheme [4] uses supersin-
gular curves E+(F3�) : y2 = x3 + 2x + 1 and E−(F3�) : y2 = x3 + 2x − 1. These
curves have the embedding degree 6 and we have GT = F×

36� . Thus our method
obtains a reduction of DLP complexity by a factor of 2

3

√
6� compared to what was

originally expected from the given cyclic group. Hence, one should take care to use
a larger cyclic subgroup of the elliptic curve than was previously used.
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Table 1. Security parameters for short signature

Curve �
DLog security DLog security

(�log2 q�) under our approach

E− 79 126 118

E+ 97 151 142

E+ 121 155 146

E+ 149 220 211

E+ 163 256 247

E− 163 259 250

E+ 167 262 253

The table 1 was presented in [4], where DLog security refers to the bit size of
largest prime divisor of |E(F3�)|. We have added a column giving corresponding
values when the random walk restriction approach is considered, under the as-
sumption that the complexity of elliptic curve addition is roughly the same as
the complexity of finite field multiplication.

It is also noted in the paper [4] that due to the work [6], the DLP over F×
36�

is easier than on prime fields of equivalent size, so that a large F×
36� should be

taken. When this advice is followed, our method can work on the larger F×
36� to

obtain a better reduction of DLP complexity.
Another example is the ID-based encryption [3]. Originally, these systems

were built on elliptic curves over a large prime field Fp of embedding degree 2,
on which our methods would yield no advantage. But for efficiency reasons Gal-
braith [11] suggested the use of elliptic curves over characteristic 2 or 3 fields
with Tate pairing of embedding degrees 4 and 6, respectively. These curves are
y2 + y = x3 + x and y2 + y = x3 + x + 1 in characteristic 2 and y2 = x3 + 2x± 1
in characteristic 3. In each of these cases, our attack can be applied to reduce
the complexity by a factor of 3

5

√
4� and 2

3

√
6�, respectively. In practice, if one

chooses � = 283 or 397 with the curve y2 + y = x3 + x + 1, we can speed up the
Pollard rho algorithm by a factor of 20.2 or 23.9, respectively.

6 Conclusion

In this paper, we proposed a variant of the Pollard rho method, called random
walk restriction, and showed that this idea can be applied to cyclic subgroups
of finite fields of large extension degree. The main idea is to restrict the random
walk of the Pollard rho to a smaller set which results in an earlier collision. As a
result, our algorithm achieves speedup over the Pollard rho method by a factor
of approximately 3p−3

4p−3

√
m in subgroups of F×

pm and can be applied to pairing
based cryptosystems.
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Appendix: Tag Tracing Method with Normal Basis

In this appendix, we explain how tag tracing [7] can be applied to binary field
with normal basis representation. Of course, this can then be easily adapted to
any Fpm .

The tag tracing method is an improvement of the Pollard rho variant that uses
r-adding walks. The main idea is to reduce the complexity of each iterating step.
In the original r-adding walks, the iterative steps compute gi+1 = giMs from gi,
where s = s(gi) is the index of gi computed by a function s : G → {0, 1, . . . , r−1}.
This involves computing a full product at each step. But, if we have another
function s : G×G → {0, 1, . . . , r− 1}∪{fail} which computes the index of giMs

without fully computing the product, we can reduce the execution time for each
step as follows.

Let M = {Ms = gmshns}. Fix a positive integer � and prepare a pre-computed
table of M� = (M ∪ {1})�. Given the i-th element gi ∈ G of the walk, com-
pute the index si = s(gi). Without a full product of gi and Msi , compute
si+1 = s(gi, Msi). Now, since MsiMsi+1 ∈ M�, we can evaluate next index
si+2 = s(gi, MsiMsi+1). Continue this process until we arrive at � iterations or
need to store current gj . It is easy to see that the execution time for each step
is expected to be

|s| + (
1
�

+ Pfail)|f |,
where Pfail is the probability of s evaluation to fail.

To apply the above procedure to F2m with the normal basis representation,
define s : G → {0, ..., r − 1} by

s(z) = (z0, z1, . . . , z�log r�−1),

for z = (z0, z1, . . . , zm−1) ∈ F2m . Given x,y ∈ F2m , since we can write their

product as xy = (xTyt, . . . ,xpm−1
T

(
ypm−1)t

), we can compute s(xy) with only
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�log r� · m bit operations using pre-computed Tyt, T (yp)t, ..., T (yp�log r�−1
)t.

This does not involve a full product of x and y. Moreover, Pfail = 0.
Hence, the complexity of each steps of tag tracing is expected to

�log r� · m +
1
l
· Mul,

where Mul denote the expected number of bit operations for multiplication in
F2m using normal basis.
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